منابع مشابه
Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus.
The Agrobacterium tumefaciens VirB7 lipoprotein contributes to the stabilization of VirB proteins during biogenesis of the putative T-complex transport apparatus. Here, we report that stabilization of VirB7 itself is correlated with its ability to form disulfide cross-linked homodimers via a reactive Cys-24 residue. Three types of beta-mercaptoethanol-dissociable complexes were visualized with ...
متن کاملHalogen transfer through halogen bonds in halogen-bound ammonia homodimers.
Ab initio MP2(full)/aug-cc-pVTZ calculations have been carried out to investigate the halogen transfer between haloamines and ammonia. The results show that the formation of a halogen bond complex between ammonia and the protonated N-haloamine is a preliminary step in the halogen transfer process. The complexation energies, optimized geometries, topology of electron density and potential energy...
متن کاملProfile of the disulfide bonds in acetylcholinesterase.
The inter- and intrasubunit disulfide bridges for the 11 S form of acetylcholinesterase isolated from Torpedo californica have been identified. Localized within the basal lamina of the synapse, the dimensionally asymmetric forms of acetylcholinesterase contain either two (13 S) or three (17 S) sets of catalytic subunits linked to collagenous and noncollagenous structural subunits. Limited prote...
متن کاملEnhancing protein stability with extended disulfide bonds.
Disulfide bonds play an important role in protein folding and stability. However, the cross-linking of sites within proteins by cysteine disulfides has significant distance and dihedral angle constraints. Here we report the genetic encoding of noncanonical amino acids containing long side-chain thiols that are readily incorporated into both bacterial and mammalian proteins in good yields and wi...
متن کاملDisulfide bonds are generated by quinone reduction.
The chemistry of disulfide exchange in biological systems is well studied. However, very little information is available concerning the actual origin of disulfide bonds. Here we show that DsbB, a protein required for disulfide bond formation in vivo, uses the oxidizing power of quinones to generate disulfides de novo. This is a novel catalytic activity, which to our knowledge has not yet been d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Biological Chemistry
سال: 2000
ISSN: 0021-9258
DOI: 10.1074/jbc.m007480200